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Abstract

The aim of this paper is to prove some new common tripled fixed point theorems for mappings

defined a set equipped with two quasi-partial b-metric spaces with the same coefficient s. Some

examples are also given in support of our new results.
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1 Introduction and Preliminaries

The notion of partial metric spaces was introduced by Matthews [1] in 1994. He extended the
Banach Contraction Principle from metric spaces to partial metric spaces. Several authors (for
examples, [2], [3], [4], [5], [6], [7], [8] worked on this notion of partial metric spaces and obtained
fixed point results for mappings satisfying different contractive conditions. Haghi et al. [9] showed
in their interesting paper that some of fixed point theorems in partial metric spaces can be obtained
from metric spaces.
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Karapinar et al. [10] introduced the concept of quasi-partial metric spaces and studied some fixed
point problems on it.

The notion of partial metric space is given as follows:

Definition 1.1. (Matthews [1]) A partial metric on a nonempty set X is a functon p : X×X → R+

such that for all x, y, z ∈ X:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on
X. For a partial metric p on X, the function dp : X ×X → R+ defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Karapinar et al. [10] gave the notion of quasi-partial metric spaces as follows.

Definition 1.2. (Karapinar et al. [10]) A quasi-partial metric on nonempty set X is a function
q : X ×X → R+ which satisfies:

(QPM1) if q(x, x) = q(x, y) = q(y, y), then x = y,

(QPM2) q(x, x) ≤ q(x, y),

(QPM3) q(x, x) ≤ q(y, x), and

(QPM4) q(x, y) + q(z, z) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X.

A quasi-partial metric space is a pair (X, q) such that X is a nonempty set and q is a quasi-partial
metric on X.

Let q be a quasi-partial metric on set X. Then dq(x, y) = q(x, y) + q(y, x) − q(x, x) − q(y, y) is a
metric on X.

Lemma 1.1. (Karapinar et al. [10]) Let (X, q) be a quasi-partial metric space. Let (X, pq) be the
corresponding partial metric space, where pq(x, y) = 1/2[q(x, y) + q(y, x)] for all x, y ∈ X is a
partial metric on X, and let (X, dpq ) be the corresponding metric space. Then following statements
are equivalent

(i) (X, q) is complete,

(ii) (X, pq) is complete,

(iii) (X, dpq ) is complete .

Moreover,

lim
n→∞

dpq (x, xn) = 0⇔ pq(x, x) = lim
n→∞

pq(x, xn) = lim
n,m→∞

pq(xn, xm)

⇔ q(x, x) = lim
n→∞

q(x, xn) = lim
n,m→∞

q(xn, xm)

= lim
n→∞

q(xn, x) = lim
n,m→∞

q(xm, xn).

In 1989, Bakhtin [11] introduced the concept of a b-metric space as a generalization of metric space
which was further extended by Czerwik [12]. Later, Shukla [13] generalized both the concepts of
b-metric and partial metric spaces by introducing the partial b-metric spaces.
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Definition 1.3. (Shukla, [13]) A partial b-metric on a nonempty set X is a mapping pb : X×X →
R+ such that for some real number s ≥ 1 and for all x, y, z ∈ X

(Pb1) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y),

(Pb2) pb(x, x) ≤ pb(x, y),

(Pb3) pb(x, y) = pb(y, x),

(Pb4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)]− pb(z, z).

A partial b-metric space is a pair (X, pb) such that X is nonempty set and pb is a partial b-metric
on X. The number s is called the coefficient of (X, pb).

The notion of quasi-partial b-metric space was introduced by Gupta and Gautam [15] where fixed
point theorem was proved on it. Later this study was extended to coupled fixed point theorems on
quasi-partial b-metric spaces in [14].

Definition 1.4. (Gupta and Gautam [15]) A quasi-partial b-metric on a nonempty set X is a
mapping qpb : X ×X → R+ such that for some real number s ≥ 1 and for all x, y, z ∈ X

(QPb1) qpb(x, x) = qpb(x, y) = qpb(y, y)⇒ x = y,

(QPb2) qpb(x, x) ≤ qpb(x, y),

(QPb3) qpb(x, x) ≤ qpb(y, x),

(QPb4) qpb(x, y) ≤ s[qpb(x, z) + qpb(z, y)]− qpb(z, z).

A quasi-partial b-metric space is a pair (X, qpb) such, that X is a nonempty set and qpb is a quasi-
partial b-metric on X. The number s is called the coefficient of (X, qpb). Let qpb be a quasi-partial
b-metric on the set X.

Then dqpb(x, y) = qpb(x, y) + qpb(y, x)− qpb(x, x)− qpb(y, y) is a b-metric on X.

Lemma 1.2. (Gupta and Gautam [15]) Every partial b-metric space is a quasi-partial b-metric
space. But the converse need not be true.

Lemma 1.3. (Gupta and Gautam [15]) Let (X, qpb) be a quasi-partial b-metric space. Then the
following hold

(A) If qpb(x, y) = 0 then x = y,

(B) If x 6= y, then qpb(x, y) > 0 and qpb(y, x) > 0.

The proof is similar to the proof for the case of quasi-partial metric space ( [10]).

Definition 1.5. (Gupta and Gautam [15]) Let (X, qpb) be a quasi-partial b-metric space. Then

(i) a sequence {xn} ⊂ X converges to x ∈ X if and only if

qpb(x, x) = lim
n→∞

qpb(x, xn) = lim
n→∞

qpb(xn, x).

(ii) a sequence {xn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(xn, xm) and lim
n,m→∞

qpb(xm, xn) exist (and are finite).

(iii) The quasi partial b-metric space (X, qpb) is said to be complete if every Cauchy sequence
{xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that qpb(x, x) = lim

n,m→∞
qpb(xm, xn)

= lim
n,m→∞

qpb(xn, xm).
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Lemma 1.4. (Gupta and Gautam [15]) Let (X, qpb) be a quasi-partial b-metric space and (X, dqpb)
be the corresponding b-metric space. Then (X, dqpb) is complete if (X, qpb) is complete.

Bhaskar and Lakshmikantham [16] introduced the concept of coupled fixed point and studied some
coupled fixed point theorems. Later, Lakshmikantham and Ćirć [17] introduced the notion of a
coupled coincidence point of mappings. For some works on a coupled fixed point, we refer to [18], [19].

For simplicity, we denote from now on X ×X × · · · ×X︸ ︷︷ ︸
k terms

by Xk where k ∈ N and X is a nonempty

set. We begin with the following:

Definition 1.6. (Bhaskar and Lakshmikantham [16]) An element (x, y) ∈ X2 is called a coupled
fixed point of the mapping F : X2 → X if F (x, y) = x and F (y, x) = y.

Definition 1.7. (Lakshmikantham and Ćirć [17]) An element (x, y) ∈ X2 is called

(i) a coupled coincidence point of the mapping F : X2 → X and g : X → X if F (x, y) = gx and
F (y, x) = gy, and (gx, gy) is called a coupled point of coincidence;

(ii) a common coupled fixed point of mappings F : X2 → X and g : X → X if F (x, y) = gx = x
and F (y, x) = gy = y.

Definition 1.8. (Abbas et al. [20]) The mappings F : X2 → X and g : X → X are called
w-compatible if gF (x, y) = F (gx, gy) whenever F (x, y) = gx and F (y, x) = gy.

In 2010, Samet and Vetro [21] introduced a fixed point of order N ≥ 3. In particular, for N = 3,
we have the following definition.

Definition 1.9. (Samet and Vetro [21]) An element (x, y, z) ∈ X3 is called a tripled fixed point of
a given mapping F : X3 → X if F (x, y, z) = x, F (y, z, x) = y, and F (z, x, y) = z.

Recently, Aydi and Abbas [22] obtained some tripled co-incidence and fixed point results in partial
metric space.

Berinde and Borcut [23] defined differently the notion of tripled fixed point in the case of ordered
sets in order to keep true the mixed monotone property. For more literature on tripled fixed points,
see [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37] and [38].

Definition 1.10. (Aydi et al. [39]) An element (x, y, z) ∈ X3 is called

(i) a tripled coincidence point of mappings F : X3 → X and g : X → X if F (x, y, z) = gx,
F (y, z, x) = gy, and F (z, x, y) = gz.

In this case (gx, gy, gz) is called a tripled point of coincidence;

(ii) a common tripled fixed point of mappings F : X3 → X and g : X → X if F (x, y, z) = gx = x,
F (y, z, x) = gy = y, and F (z, x, y) = gz = z.

Definition 1.11. (Aydi et al. [20]) The mappings F : X3 → X and g : X → X are called w-
compatible if gF (x, y, z) = F (gx, gy, gz) whenever F (x, y, z) = gx, F (y, z, x) = gy, and F (z, x, y) =
gz.

Shatanawi and Pitea [40] obtained some common coupled fixed point results for a pair of mappings
in quasi-partial metric space. Motivated by their work we have studied some coupled fixed point
theorems in quasi-partial b-metric space.
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Theorem 1.5. (Gupta and Gautam [15])Let (X, qpb) be a quasi-partial b-metric space, g : X → X
and F : X×X → X be two mappings. Suppose that there exist k1, k2, k3 ∈ [0, 1) with k1+k2+k3 < 1

and k3 <
1

s
where s ≥ 1 such that the condition

qpb(F (x, y)F (u, v)) + qpb(F (y, x), F (v, u))

≤ k1[qpb(gx, gu) + qpb(gy, gv)] + k2[qpb(gx, F (x, y)) + qpb(gy, F (y, x))]

+ k3[qpb(gu, F (u, v)) + qpb(gv, F (v, u))] (1.1)

holds for all x, y, u, v ∈ X. Also, suppose we have the following hypotheses:

(i) F (X ×X) ⊆ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb.

Then the mappings F and g have a coupled coincidence point (x, y) satisfying gx = F (x, y) =
F (y, x) = gy. Moreover, if F and g are w-compatible,then F and g have a unique common fixed
point of the form (x, x).

The aim of this article is to prove some new common tripled fixed point theorems for mappings
defined on a set equipped with two quasi-partial b-metric spaces. In this manuscript, we generalize,
improve, enrich and extend the above coupled common fixed point results. Some examples are given
to illustrate our results.

2 The Main Results

Theorem 2.1. Let qpb1 and qpb2 be two quasi-partial b-metrics on X with same coefficient s ≥ 1
and qpb2(x, y) ≤ qpb1(x, y), for all x, y ∈ X, and let F : X3 → X, g : X → X be two mappings.
Suppose that there exist k1, k2, k3, k4 and k5 in [0, 1) with

k1 + k2 + k3 + 2sk4 + k5 <
1

s
(2.1)

such that the condition

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k1[qpb2(gx, gu) + qpb2(gy, gv) + qpb2(gz, gw)]

+ k2[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y))]

+ k3[qpb2(gu, F (u, v, w)) + qpb2(gv, F (v, w, u)) + qpb2(gw, F (w, u, v))]

+ k4[qpb2(gx, F (u, v, w)) + qpb2(gy, F (v, w, u)) + qpb2(gz, F (w, u, v))]

+ k5[qpb2(gu, F (x, y, z)) + qpb2(gv, F (y, z, x)) + qpb2(gw, F (z, x, y))] (2.2)

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X);

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx = F (x, y, z) = gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).
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Proof. Let x0, y0, z0 ∈ X. Since F (X3) ⊂ g(X), we can choose x1, y1, z1 ∈ X such that gx1 =
F (x0, y0, z0), gy1 = F (y0, z0, x0) and gz1 = F (z0, x0, y0). Similarly, we can choose x2, y2, z2 ∈ X
such that gx2 = F (x1, y1, z1), gy2 = F (y1, z1, x1), and gz2 = F (z1, x1, y1). Continuing in this way
we construct three sequences {xn}, {yn}, and {zn} in X such that

gxn+1 = F (xn, yn, zn), gyn+1 = F (yn, zn, xn) and gzn+1 = F (zn, xn, yn), ∀ n ≥ 0. (2.3)

It follows from (2.2), (2.3), (QPb2), and (QPb4) that

qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)

= qpb1(F (xn−1, yn−1, zn−1), F (xn, yn, zn)) + qpb1(F (yn−1, zn−1, xn−1), F (yn, zn, xn))

+ qpb1(F (zn−1, xn−1, yn−1), F (zn, xn, yn))

≤ k1[qpb2(gxn−1, gxn) + qpb2(gyn−1, gyn) + qpb2(gzn−1, gzn)]

+ k2[qpb2(gxn−1, F (xn−1, yn−1, zn−1)) + qpb2(gyn−1, F (yn−1, zn−1, xn−1))

+ qpb2(gzn−1, F (zn−1, xn−1, yn−1))]

+ k3[qpb2(gxn, F (xn, yn, zn)) + qpb2(gyn, F (yn, zn, xn)) + qpb2(gzn, F (zn, xn, yn))]

+ k4[qpb2(gxn−1, F (xn, yn, zn)) + qpb2(gyn−1, F (yn, zn, xn)) + qpb2(gzn−1, F (zn, xn, yn)))]

+ k5[qpb2(gxn, F (xn−1, yn−1, zn−1)) + qpb2(gyn, F (yn−1, zn−1, xn−1))

+ qpb2(gzn, F (zn−1, xn−1, yn−1))]

= (k1 + k2)[qpb2(gxn−1, gxn) + qpb2(gyn−1, gyn) + qpb2(gzn−1, gzn)]

+ k3[qpb2(gxn, gxn+1) + qpb2(gyn, gyn+1) + qpb2(gzn, gzn+1)]

+ k4[qpb2(gxn−1, gxn+1) + qpb2(gyn−1, gyn+1) + qpb2(gzn−1, gzn+1)]

+ k5[qpb2(gxn, gxn) + qpb2(gyn, gyn) + qpb2(gzn, gzn)]

≤ (k1 + k2)[qpb2(gxn−1, gxn) + qpb2(gyn−1, gyn) + qpb2(gzn−1, gzn)]

+ k3[qpb2(gxn, gxn+1) + qpb2(gyn, gyn+1) + qpb2(gzn, gzn+1)]

+ k4[s{qpb2(gxn−1, gxn) + qpb2(gxn, gxn+1)} − qpb2(gxn, gxn)

+ s{qpb2(gyn−1, gyn) + qpb2(gyn, gyn+1)} − qpb2(gyn, gyn)

+ s{qpb2(gzn−1, gzn) + qpb2(gzn, gzn+1)} − qpb2(gzn, gzn)]

+ k5[qpb2(gxn, gxn+1) + qpb2(gyn, gyn+1) + qpb2(gzn, gzn+1)]

≤ (k1 + k2 + sk4)[qpb2(gxn−1, gxn) + qpb2(gyn−1, gyn) + qpb2(gzn−1, gzn)]

+ (k3 + sk4 + k5)[qpb2(gxn, gxn+1) + qpb2(gyn, gyn+1) + qpb2(gzn, gzn+1)]

≤ (k1 + k2 + sk4)[qpb1(gxn−1, gxn) + qpb1(gyn−1, gyn) + qpb1(gzn−1, gzn)]

+ (k3 + sk4 + k5)[qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)]

which implies that

qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)

≤ k1 + k2 + sk4
1− k3 − sk4 − k5

[qpb1(gxn−1, gxn) + qpb1(gyn−1, gyn) + qpb1(gzn−1, gzn)]. (2.4)

Put k =
k1 + k2 + sk4

1− k3 − sk4 − k5
. Obviously by (2.1) 0 ≤ k ≤ 1. Repeating the above inequality (2.4) n

times, we get

qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)]

≤ kn[qpb1(gx0, gx1) + qpb1(gy0, gy1) + qpb1(gz0, gz1)] . (2.5)

Next, we shall prove that {gxn}, {gyn} and {gzn} are Cauchy sequences in g(X).
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In fact, for each n,m ∈ N, m > n, from (QPb4) and (2.5) we have

qpb1(gxn, gxm) + qpb1(gyn, gym) + qpb1(gzn, gzm)

≤
m−1∑
i=n

sm−i[qpb1(gxi, gxi+1) + qpb1(gyi, gyi+1) + qpb1(gzi, gzi+1)]

≤
m−1∑
i=n

sm−iki[qpb1(gx0, gx1) + qpb1(gy0, gy1) + qpb1(gz0, gz1)]

=

m−1∑
i=n

(
k

s

)i

· sm[qpb1(gx0, gx1) + qpb1(gy0, gy1) + qpb1(gz0, gz1)]

≤
∞∑
i=n

(
k

s

)i

· sm[qpb1(gx0, gx1) + qpb1(gy0, gy1) + qpb1(gz0, gz1)]

=

(
k

s

)n

(
1− k

s

) · sm[qpb1(gx0, gx1) + qpb1(gy0, gy1) + qpb1(gz0, gz1)] (2.6)

Since

(
k

s

)
< 1, letting n→∞ in (2.6) and holding m fixed, we get

lim
n→∞

[qpb1(gxn, gxm) + qpb1(gyn, gym) + qpb1(gzn, gzm)] ≤ 0 .

But

lim
n→∞

[qpb1(gxn, gxm) + qpb1(gyn, gym) + qpb1(gzn, gzm)] ≥ 0 .

This implies

lim
n→∞

[qpb1(gxn, gxm)] = lim
n→∞

[qpb1(gyn, gym)] = lim
n→∞

qpb1(gzn, gzm) = 0 .

Now letting m→ +∞

lim
n,m→∞

qpb1(gxn, gxm) = lim
n,m→∞

qpb1(gyn, gym) = lim
n,m→∞

qpb1(gzn, gzm) = 0 . (2.7)

By similar arguments as above, we can show that

lim
n,m→∞

qpb1(gxm, gxn) = lim
n,m→∞

qpb1(gym, gyn) = lim
n,m→∞

qpb1(gzm, gzn) = 0. (2.8)

Hence, {gxn}, {gyn} and {gzn} are Cauchy sequences in (g(X), qpb1).

Since (g(X), qpb1) is complete, there exist gx, gy, gz ∈ g(X) such that {gxn}, {gyn} and {gzn}
converge to gx, gy and gz with respect to τqpb1 , where τqpb1 is a quasi-partial b-metric topology,
that is,

qpb1(gx, gx) = lim
n→∞

qpb1(gx, gxn) = lim
n→∞

qpb1(gxn, gx)

= lim
n,m→∞

qpb1(gxm, gxn) = lim
n,m→∞

qpb1(gxn, gxm), (2.9)

qpb1(gy, gy) = lim
n→∞

qpb1(gy, gyn) = lim
n→∞

qpb1(gyn, gy)

= lim
n,m→∞

qpb1(gym, gyn) = lim
n,m→∞

qpb1(gyn, gym) (2.10)
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and

qpb1(gz, gz) = lim
n→∞

qpb1(gz, gzn) = lim
n→∞

qpb1(gzn, gz)

= lim
n,m→∞

qpb1(gzm, gzn) = lim
n,m→∞

qpb1(gzn, gzm) . (2.11)

Combining (2.7)-(2.11), we have

qpb1(gx, gx) = lim
n→∞

qpb1(gx, gxn) = lim
n→∞

qpb1(gxn, gx)

= lim
n,m→∞

qpb1(gxm, gxn) = lim
n,m→∞

qpb1(gxn, gxm) = 0 (2.12)

and

qpb1(gy, gy) = lim
n→∞

qpb1(gy, gyn) = lim
n→∞

qpb1(gyn, gy)

= lim
n,m→∞

qpb1(gym, gyn) = lim
n,m→∞

qpb1(gyn, gym) = 0 (2.13)

and

qpb1(gz, gz) = lim
n→∞

qpb1(gz, gzn) = lim
n→∞

qpb1(gzn, gz)

= lim
n,m→∞

qpb1(gzm, gzn) = lim
n,m→∞

qpb1(gzn, gzm) = 0 . (2.14)

On the other hand, by (QPb4) we have

qpb1(gxn+1, F (x, y, z))

≤ s{qpb1(gxn+1, gx) + qpb1(gx, F (x, y, z))} − qpb1(gx, gx)

≤ s{qpb1(gxn+1, gx) + qpb1(gx, F (x, y, z))}
≤ s[qpb1(gxn+1, gx) + s{qpb1(gx, gxn+1) + qpb1(gxn+1, F (x, y, z))} − qpb1(gxn+1, gxn+1)]

≤ s[qpb1(gxn+1, gx)] + s2[qpb1(gx, gxn+1)] + s2[qpb1(gxn+1, F (x, y, z, ))].

Letting n→∞ in the above inequalities and using (2.12), we have

1

s
qpb1(gx, F (x, y, z)) ≤ lim

n→∞
qpb1(gxn+1, F (x, y, z)) ≤ sqpb1(gx, F (x, y, z)) . (2.15)

Similarly, using (2.13) and (2.14) we have

1

s
qpb1(gy, F (y, z, x)) ≤ lim

n→∞
qpb1(gyn+1, F (y, z, x)) ≤ sqpb1(gy, F (y, z, x)) (2.16)

and

1

s
qpb1(gz, F (z, x, y)) ≤ lim

n→∞
qpb1(gzn+1, F (z, x, y)) ≤ sqpb1(gz, F (z, x, y)) . (2.17)

Now we prove that F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz. It follows from (2.2) and
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(2.3) that

qpb1(gxn+1, F (x, y, z)) + qpb1(gyn+1, F (y, z, x)) + qpb1(gzn+1, F (z, x, y))

= qpb1(F (xn, yn, zn), F (x, y, z)) + qpb1(F (yn, zn, xn), F (y, z, x)) + qpb1(F (zn, xn, yn), F (z, x, y))

≤ k1[qpb2(gxn, gx) + qpb2(gyn, gy) + qpb2(gzn, gz)]

+ k2[qpb2(gxn, F (xn, yn, zn)) + qpb2(gyn, F (yn, zn, xn)) + qpb2(gzn, F (zn, xn, yn))]

+ k3[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y))]

+ k4[qpb2(gxn, F (x, y, z)) + qpb2(gyn, F (y, z, x)) + qpb2(gzn, F (z, x, y))]

+ k5[qpb2(gx, F (xn, yn, zn)) + qpb2(gy, F (yn, zn, xn)) + qpb2(gz, F (zn, xn, yn))]

= k1[qpb2(gxn, gx) + qpb2(gyn, gy) + qpb2(gzn, gz)]

+ k2[qpb2(gxn, gxn+1) + qpb2(gyn, gyn+1) + qpb2(gzn, gzn+1)]

+ k3[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y))]

+ k4[qpb2(gxn, F (x, y, z)) + qpb2(gyn, F (y, z, x)] + qpb2(gzn, F (z, x, y))]

+ k5[qpb2(gx, gxn+1) + qpb2(gy, gyn+1) + qpb2(gz, gzn+1)]

≤ k1[qpb1(gxn, gx) + qpb1(gyn, gy) + qpb1(gzn, gz)]

+ k2[qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)]

+ k3[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))]

+ k4[qpb1(gxn, F (x, y, z)) + qpb1(gyn, F (y, z, x)) + qpb1(gzn, F (z, x, y))]

+ k5[qpb1(gx, gxn+1) + qpb1(gy, gyn+1) + qpb1(gz, gzn+1)] .

Letting n→∞ in the above inequality, using (2.12)-(2.14) we obtain

lim
n→∞

[qpb1(gxn+1, F (x, y, z)) + qpb1(gyn+1, F (y, z, x)) + qpb1(gzn+1, F (z, x, y))]

≤ lim
n→∞

{k1[qpb1(gxn, gx) + qpb1(gyn, gy) + qpb1(gzn, gz)]

+ k2[qpb1(gxn, gxn+1) + qpb1(gyn, gyn+1) + qpb1(gzn, gzn+1)]

+ k3[qpb1(gxn, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (zn, x, y))]

+ k4[qpb1(gxn, F (x, y, z)) + qpb1(gyn, F (y, z, x)) + qpb1(gzn, F (z, x, y))]

+ k5[qpb1(gx, gxn+1) + qpb1(gy, gyn+1) + qpb1(gz, gzn+1)]} .

Therefore

lim
n→∞

[qpb1(gxn+1, F (x, y, z)) + qpb1(gyn+1, F (y, z, x)) + qpb1(gzn+1, F (z, x, y))]

≤ {k1[qpb1(gx, gx) + qpb1(gy, gy) + qpb1(gz, gz)]

+ k2[qpb1(gx, gx)) + qpb1(gy, gy) + qpb1(gz, gz)]

+ k3[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))]

+ lim
n→∞

k4[qpb1(gxn, F (x, y, z)) + qpb1(gyn, F (y, z, x)) + qpb1(gzn, F (z, x, y))]

+ k5[qpb1(gx, gx) + qpb1(gy, gy) + qpb1(gz, gz)]

= k3[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))]

+ lim
n→∞

k4[qpb1(gxn, F (x, y, z)) + qpb1(gyn, F (y, z, x)) + qpb1(gzn, F (z, x, y))];
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By using (2.15)-(2.17), we get

lim
n→∞

[qpb1(gxn+1, F (x, y, z)) + qpb1(gyn+1, F (y, z, x)) + qpb1(gzn+1, F (z, x, y))]

≤ k3[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))]

+ k4 · s[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))]

= (k3 + sk4)[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x)) + qpb1(gz, F (z, x, y))];

And also using (2.15)-(2.17) we get

1

s
[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x) + qpb1(gz, F (z, x, y))]

≤ (k3 + sk4)[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x) + qpb1(gz, F (z, x, y))]

⇒
[

1

s
− k3 − sk4

]
[qpb1(gx, F (x, y, z)) + qpb1(gy, F (y, z, x) + qpb1(gz, F (z, x, y))] ≤ 0 . (2.18)

It follows from (2.1) that

k3 + sk4 <
1

s
.

Hence it follows from (2.18) that

qpb1(gx, F (x, y, z)) = qpb1(gy, F (y, z, x)) = qpb1(gz, F (z, x, y)) = 0 .

By Lemma 1.3, we get F (x, y, z) = gx, F (y, z, x) = gy, F (z, x, y) = gz. Hence (gx, gy, gz) is a
tripled point of coincidence of mappings F and g.

Next, we will show that the tripled point of coincidence is unique.

Suppose that (x∗, y∗, z∗) ∈ X3 with F (x∗, y∗, z∗) = gx∗, F (y∗, z∗, x∗) = gy∗, and F (z∗, x∗, y∗) =
gz∗. Using (2.2), (2.12), (2.13), (2.14) and (QPb3), we obtain

qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)

= qpb1(F (x, y, z), F (x∗, y∗, z∗)) + qpb1(F (y, z, x), F (y∗, z∗, x∗)) + qpb1(F (z, x, y), F (z∗, x∗, y∗))

≤ k1[qpb2(gx, gx∗) + qpb2(gy, gy∗) + qpb2(gz, gz∗)]

+ k2[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y))]

+ k3[qpb2(gx∗, F (x∗, y∗, z∗)) + qpb2(gy∗, F (y∗, z∗, x∗)) + qpb2(gz∗, F (z∗, x∗, y∗))]

+ k4[qpb2(gx, F (x∗, y∗, z∗)) + qpb2(gy, F (y∗, z∗, x∗)) + qpb2(gz∗, F (z∗, x∗, y∗))]

+ k5[qpb2(gx∗, F (x, y, z)) + qpb2(gy∗, F (y, z, x)) + qpb2(gz∗, F (z, x, y))]

= k1[qpb2(gx, gx∗) + qpb2(gy, gy∗) + qpb2(gz, gz∗)]

+ k2[qpb2(gx, gx) + qpb2(gy, gy) + qpb2(gz, gz)]

+ k3[qpb2(gx∗, gx∗) + qpb2(gy∗, gy∗) + qpb2(gz∗, gz∗)]

+ k4[qpb2(gx, gx∗) + qpb2(gy, gy∗) + qpb2(gz, gz∗)]

+ k5[qpb2(gx∗, gx) + qpb2(gy∗, gy) + qpb2(gz∗, gz)]

≤ (k1 + k4)[qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)]

+ k2[qpb1(gx, gx) + qpb1(gy, gy) + qpb1(gz, gz)]

+ k3[qpb1(gx∗, gx∗) + qpb1(gy∗, gy∗) + qpb1(gz∗, gz∗)]

+ k5[qpb1(gx∗, gx) + qpb1(gy∗, gy) + qpb1(gz∗, gz)]

≤ (k1 + k3 + k4)[qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)]

+ k5[qpb1(gx∗, gx) + qpb1(gy∗, gy) + qpb1(gz∗, gz)] .
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This implies that

qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)

≤ k5
1− k1 − k3 − k4

[qpb1(gx∗, gx) + qpb1(gy∗, gy) + qpb1(gz∗, gz)] . (2.19)

Similarly, we have

qpb1(gx∗, gx) + qpb1(gy∗, gy) + qpb1(gz∗, gz)]

≤ k5
1− k1 − k3 − k4

[qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)] . (2.20)

Substituting (2.20) into (2.19), we obtain

qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)

≤
(

k5
1− k1 − k3 − k4

)2

[qpb1(gx, gx∗) + qpb1(gy, gy∗) + qpb1(gz, gz∗)] . (2.21)

Since
k5

1− k1 − k2 − k4
< 1, from (2.21) we must have

qpb1(gx, gx∗) = qpb1(gy, gy∗) = qpb1(gz, gz∗) = 0 .

By Lemma 1.3, we get gx = gx∗, gy = gy∗, and gz = gz∗ which implies that the uniqueness of the
tripled point of coincidence of F and g, that is, (gx, gy, gz).

Next, we will show that gx = gy = gz. In fact, from (2.2), (2.12)-(2.14) we have

qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)

= qpb1(F (x, y, z), F (y, z, x)) + qpb1(F (y, z, x), F (z, x, y) + qpb1(F (z, x, y), F (x, y, z))

≤ k1[qpb2(gx, gy) + qpb2(gy, gz) + qpb2(gz, gx)]

+ k2[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y))]

+ k3[qpb2(gy, F (y, z, x)) + qpb2(gz, F (z, x, y)) + qpb2(gx, F (x, y, z))]

+ k4[qpb2(gx, F (y, z, x)) + qpb2(gy, F (z, x, y)) + qpb2(gz, F (x, y, z))]

+ k5[qpb2(gy, F (x, y, z)) + qpb2(gz, F (y, z, x)) + qpb2(gx, F (z, x, y))]

= k1[qpb2(gx, gy) + qpb2(gy, gz) + qpb2(gz, gx)]

+ k2[qpb2(gx, gx) + qpb2(gy, gy) + qpb2(gz, gz)]

+ k3[qpb2(gy, gy) + qpb2(gz, gz) + qpb2(gx, gx)]

+ k4[qpb2(gx, gy) + qpb2(gy, gz) + qpb2(gz, gx)]

+ k5[qpb2(gy, gx) + qpb2(gz, gy) + qpb2(gx, gz)]

≤ k1[qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)]

+ k2[qpb1(gx, gx) + qpb1(gy, gy) + qpb1(gz, gz)]

+ k3[qpb1(gy, gy) + qpb1(gz, gz) + qpb1(gx, gx)]

+ k4[qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)]

+ k5[qpb1(gy, gx) + qpb1(gz, gy) + qpb1(gx, gz)]

= (k1 + k4)[qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)]

+ k5[qpb1(gy, gx) + qpb1(gz, gy) + qpb1(gx, gz)];

This implies that

qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)

≤ k5
1− k1 − k4

[qpb1(gy, gx) + qpb1(gz, gy) + qpb1(gx, gz)] . (2.22)
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By similar arguments as above, we can show that

qpb1(gy, gx) + qpb1(gz, gy) + qpb1(gx, gz)

≤ k5
1− k1 − k4

[qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)] . (2.23)

Substituting (2.23) into (2.22), we have

qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)

≤
(

k5
1− k1 − k4

)2

[qpb1(gx, gy) + qpb1(gy, gz) + qpb1(gz, gx)] . (2.24)

Since
k5

1− k1 − k4
< 1, from (2.24), we must have

qpb1(gx, gy) = qpb1(gy, gz) = qpb1(gz, gx) = 0 .

By Lemma 1.3, we get gx = gy = gz.

Finally, assume that F and g are w-compatible. Let u = gx, then we have u = gx = F (x, y, z) =
gy = F (y, z, x) = gz = F (z, x, y), and so that

gu = ggx = g(F (x, y, z)) = F (gx, gy, gz) = F (u, u, u) . (2.25)

Consequently, (u, u, u) is a tripled coincidence point of F and g, and so (gu, gu, gu) is a tripled
point of coincidence of F and g, and by its uniqueness, we get gu = gx. Thus we obtain F (u, u, u) =
gu = u. Therefore, (u, u, u) is the unique common tripled fixed point of F and g. This complete
the proof.

Remark 2.2. Theorem 2.1 improves and extends the main theorem of Gu [41] in the following
aspects:

(1) The two quasi-partial metric extends to two quasi-partial b-metrics.

(2) The tripled fixed point in quasi-partial metric extends to a tripled fixed point in quasi-partial
b-metric.

In Theorem 2.1, if we take qpb1(x, y) = qpb2(x, y) for all x, y ∈ X, then we get the following.

Corollary 2.3. Let (X, qpb) be a quasi-partial b-metric space, F : X3 → X and g : X → X be two

mappings. Suppose that there exist k1, k2, k3, k4 and k5 in [0, 1) with k1 + k2 + k3 + 2sk4 + k5 <
1

s
such that the condition

qpb(F (x, y, z), F (u, v, w)) + qpb(F (gx, F (v, w, u)) + qpb(F (z, x, y), F (w, u, v))

≤ k1[qpb(gx, gu) + qpb(gy, gv) + qpb(gz, gw)]

+ k2[qpb(gx, F (x, y, z)) + qpb(gy, F (y, z, x)) + qpb(gz, F (z, x, y))]

+ k3[qpb(gu, F (u, v, w)) + qpb(gv, F (v, w, u)) + qpb(gw, F (w, u, v))]

+ k4[qpb(gx, F (u, v, w)) + qpb(gy, F (v, w, u)) + qpb(gz, F (w, u, v))]

+ k5[qpb(gu, F (x, y, z)) + qpb(gv, F (y, z, x)) + qpb(gw, F (z, x, y))] (2.26)

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X);

(ii) g(X) is a complete subspace of X.
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Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx = F (x, y, z) = gy = F (y, z, x) = F (z, x, y) = gz .

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u, ).

The proof follows from Theorem 2.1. 2

Corollary 2.4. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings. Suppose that there exist
ai ∈ [0, 1) (i = 1, 2, 3, . . . , 15) with(

9∑
i=1

ai

)
+ 2s

(
12∑

i=10

ai

)
+

(
15∑

i=13

ai

)
<

1

s
(2.27)

such that the condition

qpb1(F (x, y, z), F (u, v, w))

≤ a1qpb2(gx, gu) + a2qpb2(gy, gu) + a3qpb2(gz, gw)

+ a4qpb2(gx, F (x, y, z)) + a5qpb2(gy, F (y, z, x)) + a6qpb2(gz, F (z, x, y))

+ a7qpb2(gu, F (u, v, w)) + a8qpb2(gv, F (v, w, u)) + a9qpb2(gw, F (w, u, v))

+ a10qpb2(gx, F (u, v, w)) + a11qpb2(gy, F (v, w, u)) + a12qpb2(gz, F (w, u, v))

+ a13qpb2(gu, F (x, y, z)) + a14qpb2(gv, F (y, z, x)) + a15qpb2(gw, F (z, x, y)) (2.28)

holds for all x, y, z, u, v, w ∈ X. Also suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X)

(ii) g(X) is a complete subspace of X with respect to quasi-partial b-metric qpb1 .

(iii) Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying gx = F (x, y, z) =
gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).

Proof. Given x, y, z, u, v, w ∈ X. It follows from (2.28) that

qpb1(F (x, y, z), F (u, v, w))

≤ a1qpb2(gx, gu) + a2qpb2(gy, gv) + a3qpb2(gz, gw)

+ a4qpb2(gx, F (x, y, z)) + a5qpb2(gy, F (y, z, x)) + a6qpb2(gz, F (z, x, y))

+ a7qpb2(gu, F (u, v, w)) + a8qpb2(gv, F (v, w, u)) + a9qpb2(gw, F (w, u, v))

+ a10qpb2(gx, F (u, v, w)) + a11qpb2(gy, F (v, w, u)) + a12qpb2(gz, F (w, u, v))

+ a13qpb2(gu, F (x, y, z)) + a14qpb2(gv, F (y, z, x)) + a15qpb2(gw, F (z, x, y)), (2.29)

qpb1(F (y, z, x), F (v, w, u))

≤ a1qpb2(gy, gv) + a2qpb2(gz, gw) + a3qpb2(gx, gu)

+ a2qpb2(gy, F (y, z, x)) + a5qpb2(gz, F (z, x, y)) + a6qpb2(gx, F (x, y, z))

+ a7qpb2(gv, F (v, w, u)) + a8qpb2(gw, F (w, u, v)) + a9qpb2(gu, F (u, v, w))

+ a10qpb2(gy, F (v, w, u)) + a11qpb2(gz, F (w, u, v)) + a12qpb2(gx, F (u, v, w))

+ a13qpb2(gv, F (y, z, x)) + a14qpb2(gw, F (z, x, y)) + a15qpb2(gu, F (x, y, z)) (2.30)
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and

qpb1(F (z, x, y), F (w, u, v))

≤ a1qpb2(gz, gw) + a2qpb2(gx, gu) + a3qpb2(gy, gv)

+ a4qpb2(gz, F (z, x, y)) + a5qpb2(gx, F (x, y, z)) + a6qpb2(gy, F (y, z, x))

+ a7qpb2(gw, F (w, u, v)) + a8qpb2(gu, F (u, v, w)) + a9qpb2(gv, F (v, w, u))

+ a10qpb2(gz, F (w, u, v)) + a11qpb2(gx, F (u, v, w)) + a12qpb2(gy, F (v, w, u))

+ a13qpb2(gw, F (z, x, y)) + a14qpb2(gu, F (x, y, z)) + a15qpb2(gv, F (y, z, x)). (2.31)

Adding inequality (2.29) and (2.30) to inequality (2.31), we get

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ (a1 + a2 + a3)[qpb2(gx, gu) + qpb2(gy, gv) + qpb2(gz, gw)]

+ (a4 + a5 + a6)[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x) + qpb2(gz, F (z, x, y))]

+ (a7 + a8 + a9)[qpb2(gu, F (u, v, w)) + qpb2(gv, F (v, w, u)) + qpb2(gw, F (w, u, v))]

+ (a10 + a11 + a12)[qpb2(gx, F (u, v, w)) + qpb2(gy, F (v, w, u)) + qpb2(gz, F (w, u, v))]

+ (a13 + a14 + a15)[qpb2(gu, F (x, y, z)) + qpb2(gv, F (y, z, x)) + qpb2(gw, F (z, x, y))]. (2.32)

Proof. Put (a1 + a2 + a3) = k1, (a4 + a5 + a6) = k2, (a7 + a8 + a9) = k3; (a10 + a11 + a12) = k4,
(a13 + a14 + a15) = k5 and then the result follows from Theorem 2.1.

Corollary 2.5. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings. Suppose that there

exists k ∈
[
0,

1

s

)
such that the condition

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k[qpb2(gx, gu) + qpb2(gy, gv) + qpb2(gz, gw)]

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X).

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying gx = F (x, y, z) =
gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).

Proof. By putting k1 = k and k2 = k3 = k4 = k5 = 0 in Theorem 2.1 we get the desired result.

Corollary 2.6. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings. Suppose that there

exists k ∈
[
0,

1

s

)
such the condition

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k[qpb2(gx, F (x, y, z)) + qpb2(gy, F (y, z, x)) + qpb2(F (gz, F (z, x, y)))]

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X)

14
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(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying gx = F (x, y, z) =
gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).

Proof. By putting k2 = k and k1 = k3 = k4 = k5 = 0 in Theorem 2.1 we get the desired result.

Corollary 2.7. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings. Suppose that there

exists k ∈
[
0,

1

s

)
such the condition.

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k[qpb2(gu, F (u, v, w)) + qpb2(gv, F (v, w, u)) + qpb2(gw, F (w, u, v))]

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X).

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx = F (x, y, z) = gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).

Proof. By putting k3 = k and k1 = k2 = k4 = k5 = 0 in Theorem 2.1 we get the desired result.

Corollary 2.8. Let qpb1 and qpb2 be two quasi-partial b-metric spaces on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings. Suppose that there

exists k ∈
[
0,

1

2s2

)
such that the condition

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k[qpb2(gx, F (u, v, w)) + qpb2(gy, F (v, w, u)) + qpb2(gz, F (w, u, v))]

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying gx = F (x, y, z) =
gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of
the form (u, u, u).

Proof. By putting k4 = k and k1 = k2 = k3 = k5 = 0 in Theorem 2.1 we get the desired result.

15
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Corollary 2.9. Let qpb1 and qpb2 be two quasi-partial b-metric spaces on X such that qpb2(x, y) ≤
qpb1(x, y), for all x, y ∈ X, and F : X3 → X, g : X → X be two mappings.

Suppose that there exists k ∈
[
0,

1

s

)
such that the condition

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ k[qpb2(gu, F (x, y, z)) + qpb2(gv, F (y, z, x)) + qpb2(gw, F (z, x, y))]

holds for all x, y, z, u, v, w ∈ X. Also, suppose we have the following hypotheses:

(i) F (X3) ⊂ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx = F (x, y, z) = gy = F (y, z, x) = gz = F (z, x, y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed
point of the form (u, u, u).

Proof. By putting k5 = k and k1 = k2 = k3 = k4 = 0 in Theorem 2.1 we get the desired result.

Now, we introduce an example to support our results.

Example 2.10. Let X = [0, 1] and two quasi-partial b-metrics qpb1 and qpb2 on X be given as

qpb1(x, y) = |x− y|+ x and qpb2(x, y) =
1

2
(|x− y|+ x) for all x, y ∈ X

with same coefficients s = 1. Also, define F : X3 → X and g : X → X as

F (x, y, z) =
x+ y + z

16
and g(x) =

x

2
for all x, y, z ∈ X.

Then

(i) (X, qpb1) is a complete quasi-partial b-metric space.

(ii) F (X3) ⊂ g(X).

(iii) F and g are w-compatible.

(iv) For any x, y, z, u, v, w ∈ X, we have

qpb1(F (x, y, z), F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

≤ 3

8
(qpb2(gx, gu) + qpb2(gy, gv) + qpb2(gz, gw)).

To verify (i) we proceed by observing that qpb1(x, y) = |x− y|+ x is a quasi-partial b-metric with
s = 1. Hence a quasi-partial metric.

By Lemma 1.1, (g(X), qpb1) is complete if and only if (g(X), pqpb1 ) is complete if and only if
(g(X), dpqpb1

) is complete.

Here,

pqpb1 (x, y) =
1

2
[qpb1(x, y) + qpb1(y, x)] (Karapinar et al. [ [10]])

= |x− y|+ x+ y

2

16
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and

dpqpb1
(x, y) = 2pqpb1 (x, y)− pqpb1 (x, x)− pqpb1 (y, y)

= 2|x− y|+ x+ y − x− y
= 2|x− y|.

Clearly, (g(X), dpqpb1
) is a complete metric space being a compact space.

To verify (ii).

Let F (x, y, z) be an arbitrary element of F (X3).

We need to show that

F (x, y, z) =
x+ y + z

16
∈ g(X) =

[
0,

1

2

]
.

Since x, y, z ∈ X = [0, 1],

therefore x+ y + z ∈ [0, 3] and hence
x+ y + z

16
∈
[
0,

3

16

]
⊂
[
0,

1

2

]
.

Hence F (X3) ⊂ g(X).

The verification of (iii) is clear.

Now, we verify (iv)

For x, y, z, u, v, w ∈ X, we have

qpb1(F (x, y, z)F (u, v, w)) + qpb1(F (y, z, x), F (v, w, u)) + qpb1(F (z, x, y), F (w, u, v))

= qpb1

(x+ y + z

16
,
u+ v + w

16

)
+ qpb1

(y + z + x

16
,
v + w + u

16

)
+ qpb1

(z + x+ y

16
,
w + u+ v

16

)
=

1

16
(|(x+ y + z)− (u+ v + w)|+ (x+ y + z) + |(y + z + x)− (v + w + u)|

+ (y + z + x) + |(z + x+ y)− (w + u+ v)|+ (z + x+ y))

=
3

16
(|(x+ y + z)− (u+ v + w)|+ (x+ y + z))

≤ 3

16
(|x− u|+ |y − v|+ |z − w|+ x+ y + z)

=
3

8

(∣∣∣x
2
− u

2

∣∣∣+
∣∣∣y
2
− v

2

∣∣∣+
∣∣∣z
2
− w

2

∣∣∣+
x

2
+
y

2
+
z

2

)
=

3

8
(qpb2(gx, gu) + qpb2(gy, gv) + qpb2(gz, gw))

Thus F and g satisfy all the hypotheses of Corollary 2.5. So, F and g have a unique common tripled
fixed point. Here (0, 0, 0) is the unique common tripled fixed point of F and g.

3 Conclusion

In this paper some new common tripled fixed point theorems for mappings defined on a set equipped
with two quasi-partial b-metric spaces is proved with same coefficient s. The existing result in
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literature for coupled common fixed point on quasi-partial b-metric space is further generalized,
improved and enriched in the present paper.
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[28] Radenović S. A note on tripled coincidence and tripled common fixed point theorems in
partially ordered metric spaces, Appl. Math. Comput. 2014;236:367-372.

[29] Alsulami HH, Roldan A, Karapinar E, Radenović S. Some inevitable remarks on ‘Tripled fixed
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