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Abstract 
 

The adaptive type-II progressive hybrid censoring has the advantage of saving both the total test time and 
the cost of the experiment; also it increases the efficiency of the statistical analysis. This article discusses 
k-level step stress accelerated life tests based on an adaptive type-II progressive hybrid censoring with 
product's life time following Lomax distribution. The scale parameter of the Lomax failure time 
distribution at constant levels is assumed to be a log linear function of the stress level. Maximum 
likelihood estimators of the model parameters are derived. Based on normal approximation to the 
asymptotic distribution of maximum likelihood estimators, the approximate confidence intervals for 
model parameters are obtained. The optimal times of changing stress levels are discussed under D-
optimality and A-optimality criteria. Such methods maximize the determinant and the trace of Fisher's 
information matrix for the model parameters. Analysis of the numerical data has been presented for 
illustrative proposes. 

 

Keywords: Adaptive type-II progressive censoring; �-level step stress accelerated life testing; Cumulative 
exposure model; Optimum test plan; Lomax distribution. 

 

Acronyms and Notation 
 
ALT        Accelerated life test. 
APHC    Adaptive type-II progressive hybrid censoring. 
CEM      Cumulative exposure model. 
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CIs         Confidence intervals 
SSALT    Step stress accelerated life test. 
MLEs     Maximum likelihood estimates. 
MSEs     Mean square errors. ��           Design stress. ��            High stress levels, where � = 1,… , �. 
             Ideal total time. �             Number of stress levels. �             Number of test units (total sample size). �:�:�       Observed failure times, � = 1,2, … . ,� . �            Predetermined number of failures. �� , �	       Scale and shape parameters of Lomax distribution. ��            Time of changing stress level ���� to ��, 1 ≤ � ≤ �,�� < �� < ⋯ < �� . 

 

1 Introduction 
 
In life testing and reliability studies, the experimenter may not always observe the failure times of 
all components placed on the test. In such cases, data obtained from such experiments are called 
censored data. The most common censoring schemes are type-I (time) censoring, where the life 
testing experiment will be terminated at a predetermined time Υ, and type-II (failure) censoring, 
where the life testing experiment will be terminated upon the	 th (  is pre-fixed) failure. 
However, the conventional type-I and type-II censoring schemes do not have the flexibility of 
allowing removal of units at points other than the terminal point of the experiment. To allow for 
more flexibility in removing items from the test before termination of experiment, more general 
censoring approaches known as progressive censoring are desired. 
 
According to [1], under progressive censoring, from a total of � units placed simultaneously on a 
life test, only � are completely observed until failure. Then, given a censoring plan ℛ =" �, … ,  �# at the time ��:�:� of the first failure,  � of the � − 1 surviving units are randomly 
withdrawn (or censored) from the life testing experiment. At the time ��:�:� of the second failure,  � of the � − 2 −  � surviving units are randomly withdrawn (or censored) from the life testing 
experiment and so on. Finally, at the time ��:�:� of the � failure, all the remaining  � = � −� − ∑  ���&�  surviving units are removed from the life testing experiment. An integer � < � is 
predetermined and the progressive type-II censoring scheme " �, … ,  �# with   > 0 and ∑  �&� +� = � is also specified. 
 
Kundu and Joarder [2] proposed a censoring scheme called type-II progressive hybrid censoring 
scheme, in which a life testing experiment with progressive type-II right censoring scheme ℛ = " �, … ,  �# is terminated at a prefixed time Υ > 	0. However, the drawback of the type-II 
progressive hybrid censoring, similar to the conventional type-I censoring (time censoring), is that 
the effective sample size is random and it can turn out to be a very small number (even equal to 
zero) and therefore the standard statistical inference procedures may not be applicable or they will 
have low efficiency. For the purpose of increasing the efficiency of statistical analysis as well as 
saving the total test time, [3] introduced an adjustment of type-II progressive hybrid censoring 
scheme, so called adaptive type-II progressive hybrid censoring (APHC) scheme. Based on this 
scheme the number of observed failures � is fixed in advanced but the experimental time is 
allowed to run over a prefixed time 
 > 	0. If  ��:�:� < 
, the experiment stops at time ��:�:� 
and it will have a usual type-II progressive censoring scheme with the prefixed progressive 
censoring " �, … ,  �#. If �*:�:� < 
 < �*+�:�:� , where , + 1 < �, then the number of items 
progressively removed from the experiment is adapted upon failure by setting " *+� = 0,  *+� =0,… ,  ��� = 0# and  � = � −� − ∑  *&� . 
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There are several studies concerned with the estimation problem based upon APHC, for example, 
[4] introduced APHC for exponential and extreme values distributions respectively. Mahmoud     
et al. [5] obtained the maximum likelihood estimates (MLEs) of unknown parameters for 
generalized Pareto distribution under APHC.  
 
Accelerated life test (ALT) is often used for reliability analysis. In order to obtain failures 
quickly, test units are run at higher than usual stress conditions. The stress loading in an 
accelerated life testing can be applied in various ways, constant stress, step stress and random 
stress. There are mainly two types of stress accelerated life testing (SSALT), a simple SSALT and 
a multiple-step (�–level) SSALT. In simple SSALT, a test unit is subjected to successively higher 
levels of stress. A test unit starts at a specified low stress for a specified length of time. If it does 
not fail, the stress is raised and held a specified time. The stress is thus increased step by step until 
the test unit fails. Generally, all test units go through the same specified pattern of stress levels 
and test times. The simplest step stress ALT uses only two stress levels and it is called simple step 
stress ALT. Nelson [6] originally proposed the simple SSALT, in which only one change of stress 
occurs with a cumulative exposure model (CEM) for type-I and type-II censored data. Simple 
SSALT has been investigated by several authors such as [7], [8], [9], [10] and [11]. 
 
In �-level SSALT there are changes of stress more than once. Khamis and Higgins [12] 
considered the optimum three steps SSALT for the exponentially distributed type-I censored data. 
Khamis [13] proposed an optimal m level SSALT design with multiple stress. Wu et al. [14] 
considered �-level SSALT with an equal duration time for progressively type-I censored data for 
exponential distribution. Wu et al. [15] have discussed �-level SSALT under type-I progressive 
censoring with random removals for exponential grouped data. Balakrishnan and Han [16] 
considered �-level SSALT with an equal duration time for progressively type-I censored data for 
exponential distribution. Recently, based on progressive type-I interval censoring, [17] discussed �-level SSALT based on progressive type-I interval censoring when the inspection times and the 
proportions of removed units in the experiment are pre-fixed. 
 
Lomax distribution is also known in literature as Pareto distribution of type-II. It is considered to 
be useful for modeling and analyzing the life time data in medical and biological sciences, 
engineering, etc. It also has been received the greatest attention from theoretical and applied 
statisticians primarily due to its use in reliability and life testing studies see for example [18]. 
Also, [19] used Lomax distribution as an alternative to the exponential distribution when the data 
are heavy tailed. In other hand, [20] used the Lomax distribution for applications in economics 
and biological sciences. Lomax distribution is also used in SSALT, for example, [21] determined 
the optimum test plan for simple SSALT using Lomax distribution. Also, [22] considered simple 
SSALT under type-I censoring using two-parameter Lomax distribution. The probability density 
function (pdf) and the cumulative distribution function (cdf) for Lomax distribution respectively 
are as follows: 
 -"�# = ��."� + �#�".+�#,								� > 0, �, � > 0.																																																																																									"1# 

 /"�# = 1 − �."� + �#�. ,											� > 0, �, � > 0,																																																																																								"2# 
 
In the literature, there were no studies that had been performed on the estimation and optimization 
problems about the step stress accelerated life testing models based on APHC scheme. Therefore, 
in this article, an attempt had been made on designing an optimum k-level step stress accelerated 
life tests for Lomax distribution based on APHC scheme. The scale parameter of the distribution 
is assumed to be log linear function of the stress level and cumulative exposure model holds. The 
model and assumptions are described in details in Section (2). In Section (3), the maximum 
likelihood method is applied to obtain the point estimators of the unknown parameters. In Section 
(4) the asymptotic Fisher information matrix and the confidence intervals of the model parameters 
that based on the asymptotic normality of the MLEs are obtained. In Section (5) the optimum test 
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plan is presented using D optimality and an optimality. The numerical study is presented to 
demonstrate the theoretical results in Section (6). Finally conclusion is presented in Section (7). 
 

2 Description of the Model 
 
This section describes the model and presents some necessary assumptions for �-level SSALT 
with APHC. The model assumptions for �-level SSALT for Lomax distribution based on APHC 
will be described as follows: 

 
I. There are multiple (�-level) of high stress, ��	, � = 1,2, … . , � in the experiment and ��	 is 

the design stress that is the stress level under normal use conditions, where		��	 < ��	 <⋯ < ��. 
II.  A random sample of � units are simultaneously placed on the test at a stress �� and run 

until time ��. At the time ��:�:� of the first failure,  � of the � − 1 surviving units are 
randomly withdrawn (or censored) from the life testing experiment. At the time ��:�:� of 
the second failure,  � of the � − 2 −  � surviving units are randomly withdrawn               
(or censored) from the life testing experiment. Starting at time ��, the remaining surviving 
units from the first step are put on the test under a stress ��, where �� > ��, these units 
are run until time ��. Starting at time ����, the remaining surviving units from the 
previous steps are put on the test under a stress ��, where �� > ����. 

III.  The failure times �:�:�, � = 1,2, … . , �; are independent and identically distributed at 
stress levels �� , � = 1,2, … . , �.	The life time of test unit is assumed to be Lomax 
distribution; with pdf (1) and cdf (2). 

IV.  Prior to the experiment, an integer � < � is predetermined; where � is the number of 
failures and the progressive type-II censoring scheme " �, … ,  �# with   > 0 and ∑  �&� +� = � is specified. At the time �*:�:� of the ,01 failure,  * of the remaining 
surviving units are randomly withdrawn (or censored) from the life testing experiment.  

V. For given time 
, allowing the experiment to run over time 
,  then there are two cases 
when ��:�:� is reached. If ��:�:� < 
, the experiment stops at time	��:�:� and it will 
have a usual type-II progressive censoring scheme with the prefixed progressive 
censoring " �, … ,  �#. Otherwise, once the experimental time passes time 
 but the 
number of failures hasn’t reached � failures "�*:�:� < 
 < �*+�:�:� 	where	, + 1 < �#, 
then the number of items progressively removed from the experiment is adapted upon 
failure by setting " *+� = 0,  *+� = 0,… ,  ��� = 0# and  � = � −� − ∑  *&� . In 
general, as long as the failures occur before time Υ, the initially planned progressive 
censoring scheme will be applied. After passing time 
, no more items will be withdrawn 
except for the time of the �01 failure where all remaining surviving items are removed.  

VI.  The Lomax scale parameters		�� , � = 1,2, … . , �		 of the underlying lifetime distribution 
are assumed to be log linear function of stress levels log;��< = = + >�� , � =1,2, … . , �	; =, > > 0,	where =, > are unknown parameters. The Lomax shape parameter � 
is independent of stress. 
 

Therefore, at stress level ��,	� = 1,2, … , � and according to the CEM, the cdf of the lifetime of a 
test unit under k-level SSALT for Lomax distribution is given by: 
 

@"�# = A/�"�; ��#																																																								0 ≤ � < ��,/�"� − �� + B�; ��#																																			�� ≤ � < ��,⋮																																																							/�"� − ���� + B���; ��#																					���� ≤ � < ∞. D 
 

Where 	/�;� − ���� + B���; ��< = 1 − ��.E;� − ���� + B���< + ��F�.
 is the cumulative 

distribution function of the failure at stresses ��	, � = 1,2, … , �; B� is the solution of the equation 
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/�+�;B�; ��+�< = /�;�� − ���� + B���; ��<. Therefore, the general form of B� is B� =GHIJGH ;�� − ���� + B���<, note that B� = 0, �� = 0 where �� is the time of changing stress level. 

Hence, the cumulative distribution function of a test unit under �-level SSALT for Lomax 
distribution is: 
 

@"�# =
KLL
M
LLN
1 − ��."� + ��#�. 																																																																																											0 ≤ � < ��,1 − ��. OP� − �� + Q���� ��RS + ��T�. 																																																								�� ≤ � < ��,⋮																																																							
1 − ��. UV� − ���� + P ������ "���� − ���� + B���#SW + ��X�. 							���� ≤ � < ∞.

D 
 
Thus the associated pdf of a test unit is 
 

Y"�# =
KLL
M
LLN
���."� + ��#�".+�#																																																																																							0 ≤ � < ��,���. OP� − �� + Q���� ��RS + ��T�".+�# 																																																					�� ≤ � < ��,⋮																																																							
���. UV� − ���� + P ������ "���� − ���� + B���#SW + ��X�".+�# 				���� ≤ � < ∞.

D 
 

3 Maximum Likelihood Estimators Based on APHC 
 
Let �:�:�, � = 1,2, … . ,�, be the � completely observed (ordered) lifetimes from Lomax 
distribution with censoring scheme " �,  �, …  �# where � is the predetermined number of 
failures, , is the number of failures observed before time 
 and � is the number of stress levels. 
The likelihood function for �-level SSALT with APHC data is considered to have the following 
form: (See [3]) 
 

	Z ∝ \V\-�;��∗<�
&� W V\E1 − /�;��∗<F^_*

&� W `1 − /"��∗ #a����∑ ^_b_cJ
�

�&� 		,																																															"3# 
 
where ��∗ = �:�:� − ���� + B��� for � = 1,…�	, � = 1,… , �and ��∗ = ��:�:� − ���� + B���. 
 
The likelihood function for the two-parameter Lomax distribution in �-level SSALT based on an 
adaptive type-II progressive censoring data takes the following form: 
 

Z ∝ \V\���.;��∗ + ��<�".+�#�
&� W V\E��.;��∗ + ��<�.F^_*

&� W `��."��∗ + ��#�.a����∑ ^_b_cJ
�

�&� .							 "4# 
 
The maximum likelihood estimators of the parameters for likelihood function (4) are obtained by 
maximizing the logarithm of the likelihood function will be expressed in the following form: 

 

log Z ∝ �� log � + ��flog ���
�&� − "� + 1#fflog;��∗ + ��<�

&�
�

�&� + �ff  log;��<*
&�

�
�&�  
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−	�ff log;��∗ + ��<*
&�

�
�&� 		− � g� − � −f *

&� h log"��∗ + ��# 
 

+� g� −� −f *
&� h log"��#.																																																																																																																						"5# 

 
Applying the log linear function relationship log;��< = = + >�� then �� = jk+lmH and the 
logarithm of the likelihood function (5) will be: 
 

log Z ∝ �� log � + �� n�= +f>���
�&� o − "� + 1#fflog;��∗ + jk+lmH<�

&�
�

�&� + 	�ff ;= + >��<*
&�

�
�&�  

 

−�ff  log;��∗ + jk+lmH<*
&�

�
�&� − � g� −� −	f *

&� h log"��∗ + jk+lmp# 
 

+� g� −�	 −f *
&� h "= + >��#.																																																																																																																	"6# 

 
The first partial derivatives of the log-likelihood function (6) with respect to the parameters =, > 
and � respectively will be as follows: 
 r log Zr= = ��� − "� + 1#ff jk+lmH��∗ + jk+lmH + ��f *

&�
�
&�

�
�&� − �ff  jk+lmH��∗ + jk+lmH

*
&�

�
�&�  

 

	−� g� −� −f *
&� h jk+lmp��∗ + jk+lmp 	+ 	� g� − � −f *

&� h,																																																			 "7# 
 

 r log Zr> = ��f���
�&� − "� + 1#ff ��jk+lmH��∗ + jk+lmH

�
&�

�
�&� + �ff ��*

&�
�

�&� − �ff  ��jk+lmH��∗ + jk+lmH
*

&�
�

�&�  

 

−� g� − �− f *
&� h ��jk+lmp��∗ + jk+lmp + � g� −� −f *

&� h��	,																																																"8# 
and 

 r log Zr� = ��� +�n�= +f>���
�&� o +ff ;= + >��<*

&�
�

�&� 	− fflog;��∗ + jk+lmH<*
&�

�
�&�  

 

−ff  log;��∗ + jk+lmH<*
&�

�
�&�  
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−g� −� − f *
&� h log"��∗ + jk+lmp# + g� −� −f *

&� h "= + >��#,																												"9# 
 

						�v = �� w−�n�= +f>���
�&� o −ff ;= + >��<*

&�
�

�&� +fflog;��∗ + jk+lmH<�
&�

�
�&�

Dx  

																		+ff  log;��∗ + jk+lmH<*
&�

�
�&�  

																		+g� − �− f *
&� h log"��∗ + jk+lmp# D	− g� −� −f *

&� h "= + >��#W. 
 
It is observed that the maximum likelihood estimates do not exist in closed form and the nonlinear 
Equations (7)-(8) should be solved numerically with respect to the unknown parameters. 
 

4 Asymptotic Fisher Information Matrix 
 
The asymptotic Fisher information matrix /y of the maximum likelihood estimator of the model 
parameters can be approximated by numerically inverting the asymptotic Fisher-information 
matrix. It is composed of the negative second and mixed partial derivatives of the natural 
logarithm of the likelihood function evaluated at the MLE. It can be given according to the 
following matrix: 
 

/y = −
z{{
{{{
|r� log Zr=� r� log Zr=r> r� log Zr=r�r� log Zr>r= r� log Zr>� r� log Zr>r�r� log Zr�r= r� log Zr�r> r� log Zr�� }~~

~~~
�
= − w-�� -�� -��-�� -�� -��-�� -�� -��� ↓ ;=v, >y, �v<, 

 
where, the elements of the asymptotic Fisher information matrix -��, -��, -��, -��, -�� and -�� are 
obtained as follows:  
 

	-�� = −"� + 1#ff;��∗ + jk+lmH<jk+lmH�� − jk+lmH;��∗ + jk+lmH<�
�
&�

�
�&� − �ff  ��∗��jk+lmH;��∗ + jk+lmH<�

*
&�

�
�&� ,								 

 

−	� g� −� −f *
&� h ��∗ ��jk+lmp"��∗ + jk+lmp#� 																																																																																												"10# 

 

-�� = �� −ff jk+lmH��∗ + jk+lmH
�
&�

�
�&� + �f *

&� −ff  jk+lmH��∗ + jk+lmH
*

&�
�

�&� − g� − � − f *
&� h jk+lmp��∗ + jk+lmp 

	
+ g� −� −f *

&� h,																																																																																																																																					"11# 
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-�� = −"� + 1#ff ��∗jk+lmH;��∗ + jk+lmH<�
�
&�

�
�&� − �ff  ;��∗jk+lmH<;��∗ + jk+lmH<�

*
&�

�
�&� 	 

 

−� g� −� −f *
&� h ��∗ jk+lmp"��∗ + jk+lmp#� ,																																																																																																				 "12# 

 
 

-�� = −"� + 1#ff ��∗;��<�jk+lmH;��∗ + jk+lmH<�
�
&�

�
�&� − �ff  ��∗;��<�jk+lmH;��∗ + jk+lmH<�

*
&�

�
�&� 	 

 

−� g� −� −f *
&� h ��∗ "��#�jk+lmp"��∗ + jk+lmp#� 																																																																																																				 "13# 

 

-�� = �f���
�&� − ff ��jk+lmH��∗ + jk+lmH

�
&�

�
�&� +ff ��*

&�
�

�&� −ff  ��jk+lmH��∗ + jk+lmH
*

&�
�

�&�  

 

−g� −� −		f *
&� h ��jk+lmp��∗ + jk+lmp + g� − � − f *

&� h�� ,																																																															"14# 
 
and 
 -�� = −���� .																																																																																																																																																						 "15# 
 
The determinant of the asymptotic Fisher information matrix can be derived from the following 
equation: 
 �/y� = -��"-��-�� − -��-��# − -��"-��-�� − -��-��# + -��"-��-�� − -��-��#.																																					"16# 
 
In addition, it can be said that the maximum likelihood estimators have an asymptotic variance-
covariance matrix defined by the inverse of /y. The approximate confidence intervals (CIs) of the 
parameters are derived based on the asymptotic distribution of the maximum likelihood 

estimators for the unknown parameters. The asymptotic distribution of 
����;��<��= ;��< can be 

approximated by a standard normal distribution, where �= ;�y< is the asymptotic variance. 
Therefore, the two-sided approximate �	100  percent confidence limits  for � ( lower bound (LB), 

upper bound (UB) can be obtained, such that LB(�# = 	 �y − �� �⁄ ��= ;�y<, UB(�# = �y +
�� �⁄ ��= ;�y< were �� �⁄  is the 100"γ 2⁄ #%		 standard normal percentile and �y ≡ ;=v	, �v, >y<. 
 
 

5 Optimum Test Plan 
 
The main objective of this section is to determine the optimal test plan which leads to the most accurate 
estimate. Optimum time of changing stress levels ����, � = 2,… , �  will be introduced. Based on D- 
optimality criterion (which is based on maximizing the determinant of the Fisher information matrix of the 
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maximum likelihood estimators for the model parameters), the optimum time of changing stress level ����, � = 2,… , � can be obtained by solving the following equation: 
 r�/y�r���� = 0, � = 2, … , �, 																																																																																																																																		"17# 
 
where �/y� is the determinant of the asymptotic Fisher information matrix. In general, the first 
partial derivative for the determinant of the asymptotic Fisher information matrix is as follows: 
 �/y�′ = -��′"-��-�� − -��-��# + -��"-��-�� − -��-��#′ − -��′"-��-�� − -��-��# − -��"-��-�� − -��-��#′ 								+-��′"-��-�� − -��-��# + -��"-��-�� − -��-��#′, 

 �/y�′ = -��′"-��-�� − -��-��# + -��;-��′-�� + -��-��′ − -��′-�� − -��-��′< − -��′"-��-�� − -��-��# 								−	-��;-��′-�� + -��-��′ − -��′-�� − -��-��′< + -��′"-��-�� − -��-��# 							+-��;-��′-�� + -��-��′ − -��′-�� − -��-��′<.																																																																																							"18# 
 
To obtain the optimum time of changing stress levels, Equation (18) will be derived by taking the 
first partial derivatives of Equations from (10) to (15) with respect to ����, � = 2,… , �. 
Furthermore, some other optimality criteria can also be used in this content, such as maximization 
of the trace of the asymptotic Fisher information matrix of the MLEs (A optimality). (See [23]). 
 

6 Numerical Illustration 
 
To obtain the optimum test plan and the maximum likelihood estimators for �-level SSALT with 
an adaptive type-II progressive hybrid censoring, random samples of sizes � = 30,50,70	and	100are generated from two-parameter Lomax distribution. The MSEs for the 
MLEs are calculated. In addition, the optimum times for changing stress levels are calculated by 
using two optimality schemes (A and D optimality). Furthermore, following [24], three 
progressive censoring schemes are considered as follows: 
 
Scheme 1:  � = ⋯ =  ��� = 0 and   � = � −�. 
Scheme 2:  � = ⋯ =  ��� = 1 and   � = � − 2� + 1. 

Scheme 3:  � = ⋯ =  ��� =  � = ���� . 
 
For each progressive scheme, the simulation procedures are described according to the following 
algorithm: 
 

i. The value of the shape parameter of Lomax lifetime are selected as	α ="0.2,0.3,0.4#.		The stress values are selected as 		�� = 0.5, �� = 0.75, �� = 1 and �� = 2 
for each stress level k, where "� = 2,3,4#,	then calculate �� = jk+lmH	for	a = 0.5, b =0.5, 
 = 1.5 and m	 = 10. 

ii.  Generate random samples of sizes N = 30,50,70	and	100 from uniform "0,1# 
distribution and then obtain the order statistics (��:� … ,��:�). 

iii.  For a given value of the first time of changing stress level �� = 1	,	 if 0 < �:� ≤/"��, ��# where	/"��; ��# is defined in Equation (2) and � = 1, … ,�, obtain		T =��"1 − �:�#�J� − ��. 
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iv. For a given value of the second time of changing stress level �� = 2	,	 if /"��, ��# <�:� ≤ /"�� − �� + B�, ��# obtain, � = ��"1 − �:�#�J� − �� − B� + ��. 
v. For a given value of the third time of changing stress level �� = 4,	 if 	/"�� − �� +B�, ��# < �:� ≤ /"�� − �� + B�, ��# obtain, � = ��"1 − �:�#�J� − �� − B� + ��. 

vi. For a given value of the fourth time of changing stress level �� = 8,	if 	/"�� − �� +B�, ��# < �:� ≤ /"�� − �� + B�, ��# obtain, � = ��"1 − �:�#�J� − �� − B� + ��. 
vii.  Based on different values of �, 
, �� , � = 1,2,3,4	and for given values of the parameters a, b and α, MLEs for the unknown parameters are calculated numerically Equations from 

(7) to (9). 
viii.  The MSEs for MLEs of the unknown parameters are obtained. Also, the approximate 

confidence intervals of the parameters are obtained assuming 95% confidence level. 
ix. The optimum times of changing stress levels using the two different optimality schemes 

for the three different progressive schemes.   
x. The previous steps are repeated for 100 replications. 

 
The numerical results based on �-level SSALT for Lomax distribution under APHC data with � = 2, 3, and	4 are summarized in Tables 1-6. 
 
From Tables 1-3, the following conclusions can be observed: 
 
 

I. In all cases, based on the three selected progressively censored schemes ( � = 0 =  ��� = 0,  � = � −� ), " � = ⋯ =  ��� = 1  and  � = � − 2� + 1#  and " � = ⋯ =  ��� =  � = ���� #, 
the biases and the MSEs of �v have the smallest values for all different values of the parameters and 
for each value of �. 

II.  In almost all cases, for different values of the parameters and based on the three progressively 
censored schemes, the values of the biases and the MSEs decrease as sample size increases for each 
value of �. 

III.  In all cases, for different values of the parameters and based on the three progressively censored 
plans, it is observed that >y has the shortest confidence intervals. 

IV.  In some cases, it is noticed that the asymptotic CIs of =v  and >y can take negative values especially 
for � = 70 and 100. 

V. The values of the MSEs of �v are the smallest for the third progressively censored scheme for almost 
all different values of the parameter and for each value of 	�. 

VI.  The MSEs of =v  have the smallest values for the first and the second progressively censored plan, 
for almost all different values of the parameter and for each value of �. 

VII.  The MSEs of �v  have the smallest values as �  increases for almost all different values of the 
parameter and for the three selected progressively censored schemes. 
 

From Tables 4-6, the following conclusion can be observed: 
 
Based on the three progressively censoring plan, the optimum times of changing stress levels 
using A optimality have greater values than D optimality for almost all different values of the 
parameters and for each value of �. 
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Table 1. The biases, the MSEs and asymptotic confidence intervals of the MLEs of a, b and � under various censoring schemes of the  -level SSALT with APHC 
scheme for ¡ = ¢.£, ¤ = ¢. £, � = ¢. ¥ and ¦ = 	§. £ when   = "¥, ¨, ©# 

 ª Scheme Bias MSE Confidence Interval ¡« ¤� �« ¡« ¤� �« ¡« ¤� �« 
   = ¥ 
 
30 

1 -0.320 -0.485 -0.077 0.102 0.235 0.007 (0.175,0.185) (0.015,0.016) (0.111,0.135) 
2 -0.334 -0.485 -0.063 0.122 0.235 0.005 (0.129,0.203) (0.014,0.015) (0.123,0.152) 
3 -0.320 -0.485 -0.049 0.103 0.235 0.004 (0.177,0.182) (0.015,0.016) (0.133,0.168) 

 1 -0.317 -0.485 -0.086 0.100 0.235 0.008 (0.180,0.187) (0.015,0.016) (0.106,0.122) 
50 2 -0.315 -0.485 -0.071 0.100 0.235 0.006 (0.181,0.189) (0.015,0.016) (0.119,0.138) 
 3 -0.325 -0.485 -0.057 0.108 0.235 0.004 (0.162,0.189) (0.015,0.016) (0.132,0.155) 
 
70 

1 -0.323 -0.484 -0.100 0.106 0.234 0.011 (0.168,0.187) (0.015,0.017) (0.093,0.107) 
2 -0.328 -0.484 -0.085 0.111 0.234 0.008 (0.159,0.185) (0.016,0.017) (0.107,0.123) 
3 -0.349 -0.484 -0.070 0.135 0.234 0.006 (0.124,0.179) (0.015,0.017) (0.120,0.139) 

 
100 

1 -0.343 -0.483 -0.103 0.126 0.233 0.011 (0.139,0.176) (0.016,0.018) (0.092,0.102) 
2 -0.337 -0.483 -0.100 0.122 0.233 0.011 (0.145,0.182) (0.016,0.018) (0.095,0.105) 
3 -0.344 -0.483 -0.088 0.135 0.234 0.008 (0.131,0.182) (0.016,0.017) (0.105,0.118) 

   = ¨ 
 1 -0.326 -0.485 -0.059 0.110 0.235 0.004 (0.152,0.196) (0.015,0.016) (0.127,0.155) 
30 2 -0.325 -0.485 -0.034 0.107 0.235 0.003 (0.161,0.189) (0.015,0.016) (0.149,0.182) 
 3 -0.352 -0.485 -0.030 0.140 0.235 0.003 (0.102,0.193) (0.014,0.016) (0.152,0.187) 
 1 -0.331 -0.484 -0.070 0.112 0.234 0.006 (0.155,0.184) (0.015,0.017) (0.121,0.140) 
50 2 -0.325 -0.484 -0.050 0.107 0.234 0.003 (0.163,0.188) (0.015,0.017) (0.140,0.160) 
 3 -0.347 -0.484 -0.035 0.131 0.235 0.003 (0.125,0.180) (0.015,0.016) (0.152,0.178) 
 1 -0.330 -0.484 -0.084 0.115 0.234 0.008 (0.152,0.188) (0.015,0.017) (0.108,0.123) 
70 2 -0.337 -0.486 -0.070 0.119 0.237 0.005 (0.145,0.180) (0.008,0.02) (0.123,0.137) 
 3 -0.581 -0.480 -0.022 0.368 0.23 0.001 (-0.122,-0.04) (0.018,0.022) (0.172,0.185) 
 1 -0.364 -0.482 -0.090 0.154 0.232 0.008 (0.107,0.164) (0.017,0.019) (0.105,0.115) 
100 2 -0.359 -0.482 -0.087 0.151 0.233 0.008 (0.112,0.169) (0.017,0.018) (0.108,0.119) 
 3 -0.361 -0.485 -0.068 0.144 0.236 0.005 (0.116,0.163) (0.009,0.021) (0.126,0.137) 
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ª Scheme Bias MSE Confidence Interval ¡« ¤� �« ¡« ¤� �« ¡« ¤� �« 
        = ©     
 1 -0.328 -0.485 -0.047 0.110 0.235 0.003 (0.154,0.189) (0.015,0.016) (0.138,0.168) 
30 2 -0.335 -0.485 -0.015 0.113 0.235 0.002 (0.153,0.177) (0.015,0.016) (0.167,0.203) 
 3 -0.440 -0.484 -0.008 0.123 0.234 0.003 (0.134,0.172) (0.015,0.017) (0.187,0.229) 
 1 -0.340 -0.484 -0.056 0.121 0.234 0.004 (0.140,0.179) (0.015,0.018) (0.134,0.154) 
50 2 -0.347 -0.483 -0.030 0.124 0.234 0.003 (0.136,0.170) (0.015,0.018) (0.156,0.184) 
 3 -0.440 -0.482 -0.008 0.137 0.233 0.002 (0.117,0.155) (0.016,0.019) (0.194,0.223) 
 1 -0.330 -0.484 -0.065 0.113 0.234 0.005 (0.155,0.186) (0.015,0.017) (0.127,0.143) 
70 2 -0.350 -0.482 -0.052 0.128 0.233 0.004 (0.133,0.168) (0.016,0.019) (0.138,0.157) 
 3 -0.370 -0.481 -0.016 0.143 0.232 0.003 (0.112,0.148) (0.017,0.020) (0.170,0.198) 
 1 -0.367 -0.482 -0.075 0.149 0.232 0.006 (0.109,0.156) (0.017,0.019) (0.120,0.130) 
100 2 -0.364 -0.482 -0.071 0.147 0.232 0.005 (0.113,0.160) (0.017,0.019) (0.123,0.134) 
 3 -0.340 -0.480 -0.046 0.157 0.231 0.003 (0.098,0.141) (0.018,0.021) (0.146,0.162) 

 
Table 2. The biases, the MSEs and asymptotic confidence intervals of the MLEs of a, b and � under various censoring schemes of the   -level SSALT with APHC 

scheme for ¡ = ¢.£, ¤ = ¢. £, � = ¢. ¨ and ¦ = 	§. £ when   = "¥, ¨, ©# 
 ª Scheme Bias MSE Confidence Interval ¡« ¤� �« ¡« ¤� �« ¡« ¤� �« 

   = ¥ 
 
30 

1 -0.320 -0.485 -0.157 0.102 0.235 0.027 (0.177,0.184) (0.015,0.016) (0.127,0.158) 
2 -0.360 -0.485 -0.113 0.147 0.235 0.015 (0.093,0.187) (0.014,0.016) (0.171,0.203) 
3 -0.324 -0.485 -0.147 0.105 0.235 0.024 (0.169,0.182) (0.015,0.016) (0.135,0.170) 

 1 -0.341 -0.484 -0.145 0.123 0.234 0.022 (0.137,0.181) (0.015,0.017) (0.145,0.165) 
 50 2 -0.355 -0.483 -0.126 0.134 0.233 0.017 (0.120,0.169) (0.016,0.018) (0.164,0.184) 
 3 -0.380 -0.485 -0.111 0.159 0.235 0.014 (0.086,0.154) (0.010,0.020) (0.178,0.200) 
 
70 

1 -0.372 -0.475 -0.170 0.210 0.231 0.030 (0.065,0.191) (0.008,0.042) (0.123,0.136) 
2 -0.342 -0.483 -0.164 0.125 0.233 0.028 (0.137,0.178) (0.016,0.018) (0.129,0.143) 
3 -0.380 -0.483 -0.150 0.168 0.233 0.024 (0.084,0.156) (0.016,0.019) (0.142,0.158) 
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ª Scheme Bias MSE Confidence Interval ¡« ¤� �« ¡« ¤� �« ¡« ¤� �« 
 
100 

1 -0.404 -0.480 -0.180 0.186 0.230 0.033 (0.066,0.125) (0.019,0.021) (0.115,0.125) 
2 -0.434 -0.472 -0.182 0.258 0.228 0.034 (0.014,0.117) (0.014,0.041) (0.113,0.124) 
3 -0.430 -0.482 -0.156 0.223 0.233 0.025 (0.032,0.108) (0.014,0.022) (0.139,0.149) 

   = ¨ 
 1 -0.335 -0.485 -0.107 0.116 0.235 0.013 (0.143,0.188) (0.015,0.016) (0.178,0.209) 
30 2 -0.325 -0.485 -0.134 0.107 0.235 0.020 (0.161,0.189) (0.015,0.016) (0.149,0.182) 
 3 -0.455 -0.490 -0.094 0.256 0.241 0.010 (-0.03,0.125) (-0.003,0.02) (0.194,0.219) 
 1 -0.331 -0.484 -0.170 0.112 0.234 0.030 (0.155,0.184) (0.015,0.017) (0.121,0.140) 
 50 2 -0.383 -0.483 -0.103 0.159 0.234 0.012 (0.086,0.148) (0.011,0.022) (0.187,0.207) 
 3 -0.489 -0.482 -0.102 0.283 0.232 0.012 (-0.047,0.06) (0.016,0.020) (0.186,0.209) 
 1 -0.372 -0.482 -0.152 0.154 0.233 0.024 (0.099,0.156) (0.016,0.019) (0.141,0.155) 
70 2 -0.370 -0.482 -0.146 0.149 0.232 0.022 (0.105,0.156) (0.017,0.02) (0.147,0.161) 
 3 -0.426 -0.482 -0.127 0.209 0.233 0.017 (0.035,0.113) (0.016,0.020) (0.165,0.181) 
 1 -0.476 -0.478 -0.176 0.270 0.228 0.032 (-0.017,0.06) (0.021,0.024) (0.118,0.129) 
100 2 -0.501 -0.478 -0.179 0.298 0.228 0.033 (-0.044,0.04) (0.021,0.024) (0.115,0.127) 
 3 -0.489 -0.480 -0.146 0.270 0.231 0.022 (-0.024,0.04) (0.015,0.026) (0.150,0.159) 
   = © 
 1 -0.334 -0.485 -0.138 0.115 0.235 0.021 (0.145,0.186) (0.015,0.016) (0.146,0.178) 
30 2 -0.378 -0.483 -0.059 0.150 0.233 0.006 (0.091,0.152) (0.015,0.019) (0.222,0.261) 
 3 -0.395 -0.481 -0.040 0.164 0.231 0.005 (0.074,0.137) (0.017,0.021) (0.237,0.283) 
 1 -0.372 -0.487 -0.107 0.151 0.238 0.013 (0.097,0.159) (0.002,0.024) (0.181,0.204) 
 50 2 -0.377 -0.482 -0.106 0.154 0.232 0.013 (0.093,0.152) (0.016,0.020) (0.181,0.207) 
 3 -0.440 -0.480 -0.086 0.238 0.231 0.009 (0.020,0.171) (0.018,0.021) (0.200,0.228) 
 1 -0.404 -0.479 -0.129 0.177 0.230 0.018 (0.069,0.123) (0.019,0.023) (0.164,0.178) 
70 2 -0.392 -0.482 -0.129 0.166 0.232 0.018 (0.082,0.134) (0.016,0.021) (0.163,0.180) 
 3 -0.440 -0.479 -0.096 0.210 0.229 0.011 (0.030,0.089) (0.020,0.023) (0.193,0.215) 
 1 -0.460 -0.477 -0.156 0.231 0.228 0.025 (0.013,0.068) (0.021,0.024) (0.140,0.149) 
100 2 -0.472 -0.475 -0.151 0.239 0.226 0.023 (0.002,0.053) (0.024,0.026) (0.145,0.153) 
 3 -0.431 -0.478 -0.123 0.200 0.228 0.017 (0.045,0.092) (0.021,0.024) (0.169,0.184) 
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Table 3.The biases, the MSEs and asymptotic confidence intervals of the MLEs of a, b and � under various censoring schemes of the  k-level SSALT  with APHC 
scheme for ¡ = ¢.£, ¤ = ¢. £, � = ¢. © and ¦ = 	§. £ when   = "¥, ¨, ©# 

 ª Scheme Bias MSE Confidence Interval ¡« ¤� �« ¡« ¤� �« ¡« ¤� �« 
   = ¥ 
 
30 

1 -0.385 -0.476 -0.199 0.220 0.235 0.041 (0.019,0.210) (-.009,0.058) (0.186,0.217) 
2 -0.422 -0.485 -0.184 0.219 0.235 0.035 (0.005,0.151) (0.013,0.016) (0.202,0.230) 
3 -0.324 -0.485 -0.246 0.106 0.235 0.063 (0.167,0.185) (0.015,0.016) (0.136,0.171) 

 1 -0.428 -0.472 -0.225 0.258 0.232 0.052 (-0.003,0.14) (0.001,0.054) (0.165,0.185) 
50 2 -0.382 -0.482 -0.212 0.158 0.232 0.046 (0.087,0.148) (0.017,0.020) (0.178,0.198) 
 3 -0.403 -0.483 -0.201 0.182 0.233 0.042 (0.058,0.136) (0.015,0.018) (0.189,0.209) 
 1 -0.418 -0.473 -0.252 0.227 0.228 0.064 (0.028,0.135) (0.011,0.042) (0.142,0.153) 

2 -0.402 -0.480 -0.245 0.176 0.231 0.060 (0.070,0.150) (0.018,0.021) (0.150,0.160) 
3 -0.479 -0.483 -0.236 0.277 0.234 0.056 (-0.03,0.072) (0.012,0.021) (0.157,0.172) 

 
100 

1 -0.540 -0.469 -0.285 0.347 0.224 0.082 (-0.08,0.005) (0.019,0.042) (0.109,0.120) 
2 -0.554 -0.475 -0.289 0.337 0.225 0.084 (-0.088,-0.02) (0.024,0.026) (0.106,0.116) 
3 -0.540 -0.480 -0.250 0.329 0.230 0.063 (-0.07,-0.002) (0.016,0.025) (0.146,0.154) 

   = ¨ 
 1 -0.414 -0.486 -0.185 0.213 0.236 0.036 (0.013,0.159) (0.014,0.015) (0.201,0.228) 
30 2 -0.341 -0.485 -0.213 0.123 0.235 0.213 (0.129,0.188) (0.015,0.016) (0.169,0.188) 
 3 -0.552 -0.496 -0.171 0.371 0.254 0.031 (-0.144,0.04) (-0.02,0.035) (0.214,0.243) 
 1 -0.331 -0.482 -0.213 0.261 0.232 0.047 (-0.02,0.092) (0.017,0.020) (0.176,0.198) 
50 2 -0.452 -0.481 -0.202 0.227 0.232 0.042 (0.005,0.09) (0.014,0.024) (0.189,0.208) 
 3 -0.347 -0.484 -0.209 0.318 0.234 0.045 (-0.08,0.038) (0.013,0.019) (0.180,0.203) 
 1 -0.440 -0.480 -0.238 0.216 0.230 0.057 (0.025,0.094) (0.018,0.022) (0.157,0.168) 
70 2 -0.465 -0.479 -0.235 0.247 0.230 0.056 (-0.005,0.07) (0.019,0.023) (0.158,0.171) 
 3 -0.555 -0.483 -0.221 0.337 0.234 0.049 (-0.09,-0.015) (0.009,0.025) (0.174,0.185) 
 1 -0.544 -0.475 -0.295 0.457 0.226 0.087 (-0.184,-0.10) (0.023,0.026) (0.100,0.111) 
100 2 -0.551 -0.475 -0.290 0.469 0.225 0.085 (-0.19,-0.108) (0.024,0.026) (0.104,0.116) 
 3 -0.489 -0.480 -0.246 0.270 0.231 0.061 (-0.02,0.045) (0.015,0.026) (0.150,0.159) 
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  = © 
 1 -0.337 -0.484 -0.234 0.117 0.235 0.057 (0.142,0.183) (0.014,0.017) (0.149,0.183) 
30 2 -0.425 -0.479 -0.119 0.187 0.230 0.017 (0.047,0.102) (0.018,0.023) (0.262,0.300) 
 3 -0.329 -0.485 -0.144 0.108 0.235 0.021 (0.169,0.173) (0.015,0.016) (0.253,0.259) 
 1 -0.453 -0.479 -0.182 0.221 0.229 0.035 (0.013,0.082) (0.020,0.023) (0.207,0.230) 
50 2 -0.463 -0.478 -0.174 0.231 0.229 0.032 (0.001,0.071) (0.020,0.024) (0.214,0.239) 
 3 -0.440 -0.478 -0.164 0.298 0.229 0.030 (-0.066,0.02) (0.020,0.024) (0.219,0.252) 
 1 -0.490 -0.476 -0.218 0.253 0.227 0.048 (-0.01,0.037) (0.022,0.026) (0.176,0.189) 
70 2 -0.505 -0.475 -0.212 0.266 0.226 0.046 (-0.029,0.02) (0.023,0.026) (0.181,0.194) 
 3 -0.440 -0.476 -0.170 0.298 0.226 0.033 (-0.06,-0.006) (0.023,0.026) (0.216,0.244) 
 1 -0.557 -0.473 -0.257 0.322 0.224 0.067 (-0.079,-0.03) (0.026,0.028) (0.137,0.148) 
100 2 -0.566 -0.473 -0.245 0.333 0.224 0.061 (-0.088,-0.04) (0.026,0.028) (0.148,0.162) 
 3 -0.560 -0.473 -0.197 0.322 0.224 0.042 (-0.07,-0.042) (0.025,0.028) (0.192,0.214) 

 
Table 4.Optimum time of changing stress level under various censoring schemes of the   -level SSALT with APHC scheme for ¡ = ¢. £, ¤ = ¢. £, � = ¢. ¥	and 

when   = "¥, ¨, ©# 
 ª Scheme ¬§   = ¥   = ¨   = © 

A Optimality D Optimality A Optimality D Optimality A Optimality D Optimality 
 
30 

1 1.590 0.173 1.596 0.510 0.770 0.526 
2 1.507 0.678 0.567 0.250 0.932 0.481 
3 1.176 0.125 1.169 0.117 0.515 0.275 

 
50 

1 0.741 1.447 1.297 0.154 0.473 0.738 
2 1.202 0.635 1.124 0.264 0.400 0.625 
3 1.579 0.865 1.263 0.147 0.210 0.106 

 
70 

1 0.573 2.510 0.382 0.338 0.347 0.190 
2 1.079 0.150 1.120 0.350 0.884 0.117 
3 0.924 1.255 0.931 0.534 0.813 0.240 

 
100 

1 0.502 0.766 0.315 0.310 0.323 0.357 
2 0.472 0.646 0.522 0.306 0.464 0.310 
3 1.359 0.140 1.257 0.661 0.402 0.207 
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Table 5. Optimum time of changing stress level under various censoring schemes of the  -level SSALT with APHC scheme for ¡ = ¢. £, ¤ = ¢. £, � = ¢. ¨ and 
when   = "¥, ¨, ©# 

 
N Scheme ¬§   = ¥   = ¨   = © 

A Optimality D Optimality A Optimality D Optimality A Optimality D Optimality 
 
30 

1 1.402 0.237 1.281 0.346 0.637 0.526 
2 1.334 0.447 0.856 0.638 0.899 0.402 
3 1.013 0.826 1.298 0.422 0.584 0.113 

 
50 

1 0.533 0.461 1.176 0.680 0.353 0.509 
2 1.005 0.596 0.951 0.293 0.312 0.250 
3 1.244 0.279 1.335 0.740 0.230 0.278 

 
70 

1 0.492 1.102 0.321 0.122 0.315 0.562 
2 1.084 1.763 0.408 0.194 0.565 0.250 
3 0.562 1.217 1.227 2.035 0.626 0.770 

 
100 

1 0.370 1.157 0.367 0.731 0.366 0.173 
2 0.362 0.250 0.432 0.250 0.340 0.153 
3 0.368 1.624 0.557 0.172 0.165 0.364 
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Table 6. Optimum time of changing stress level under various censoring schemes of the   -level 
SSALT testing  with APHC scheme for a=0.5, b=0.5, � = ¢. © and when   = "¥, ¨, ©# 

 ª Scheme ¬§   = ¥   = ¨   = © 
A 

optimality 
D 

optimality 
A  

optimality 
D 

optimality 
A  

optimality 
D 

optimality 
 
30 

1 1.549 0.284 0.435 0.304 0.568 0.526 
2 1.384 0.451 0.842 0.214 0.216 0.463 
3 1.395 1.403 1.267 0.112 0.437 0.213 

 
50 

1 0.485 0.389 0.951 0.181 0.570 0.447 
2 0.971 1.161 0.790 0.872 0.299 0.476 
3 1.404 0.437 1.471 0.878 0.221 0.520 

 
70 

1 0.418 2.719 0.338 0.270 0.392 0.122 
2 1.049 1.575 0.744 0.770 0.184 0.500 
3 0.616 0.254 0.598 0.676 0.157 0.367 

 
100 

1 0.303 1.036 0.360 0.170 0.316 0.250 
2 0.307 0.375 0.499 0.480 0.323 0.250 
3 0.529 2.007 0.429 0.340 0.387 0.595 

 

7 Conclusion 
 
This paper concerns with the estimation problem and optimal test plans for �-level SSALT based 
on APHC data. A Lomax failure time distribution with scale parameter which is a log-linear 
function of the stress and a cumulative exposure model are assumed. The performance of the 
MLEs is evaluated using the mean square error criterion through numerical data. Asymptotic CIs 
have been established for the model parameters. In addition, the optimum times of changing stress 
levels are computed using A optimality and D optimality schemes. The calculations have been 
worked out based on different sample sizes and three selected progressive censored schemes. 
 
In the numerical study, it is observed that the MSEs have its smallest values as � increases for 
almost all values of the parameters. In general, if the experimental time is not a major concern, 
then considering � = 4 is recommended in order to obtain better estimates of model parameters. 
The decision problem of obtaining appropriate number of failures under adaptive type-II 
progressive hybrid censored life testing experiment can save the total test time and increase the 
efficiency of statistical analysis. In this study, it is noted that the optimum number of changing 
stress levels is not the same but has relatively close values for the two optimality criteria. 
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