Verga, Adam S. and Tucker, Sarah Jo and Gao, Yuming and Plaskett, Alena M. and Hollister, Scott J. (2022) Nonlinear Viscoelastic Properties of 3D-Printed Tissue Mimicking Materials and Metrics to Determine the Best Printed Material Match to Tissue Mechanical Behavior. Frontiers in Mechanical Engineering, 8. ISSN 2297-3079
pubmed-zip/versions/1/package-entries/fmech-08-862375/fmech-08-862375.pdf - Published Version
Download (2MB)
Abstract
3D-printed biomaterials have become ubiquitous for clinical applications including tissue-mimicking surgical/procedure planning models and implantable tissue engineering scaffolds. In each case, a fundamental hypothesis is that printed material mechanical properties should match those of the tissue being replaced or modeled as closely as possible. Evaluating these hypotheses requires 1) consistent nonlinear elastic/viscoelastic constitutive model fits of 3D-printed biomaterials and tissues and 2) metrics to determine how well 3D-printed biomaterial mechanical properties match a corresponding tissue. Here we utilize inverse finite element modeling to fit nonlinear viscoelastic models with Neo-Hookean kernels to 29 Polyjet 3D-printed tissue-mimicking materials. We demonstrate that the viscoelastic models fit well with R2 > 0.95. We also introduce three metrics ( least-squares difference, Kolmogorov–Smirnov statistics, and the area under stress/strain or load/displacement curve) to compare printed material properties to tissue properties. All metrics showed lower values for better matches between 3D-printed materials and tissues. These results provide a template for comparing 3D-printed material mechanical properties to tissue mechanical properties, and therefore, a basis for testing the fundamental hypotheses of 3D-printed tissue-mimicking materials.
Item Type: | Article |
---|---|
Subjects: | Archive Digital > Engineering |
Depositing User: | Unnamed user with email support@archivedigit.com |
Date Deposited: | 09 Jun 2023 06:40 |
Last Modified: | 18 Jan 2024 11:54 |
URI: | http://eprints.ditdo.in/id/eprint/1072 |